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Abstract

We discuss approximations of vertex couplings of quantum graphs using
families of thin branched manifolds. We show that if a Neumann-type Laplacian
on such manifolds is amended by suitable potentials, the resulting Schrödinger
operators can approximate non-trivial vertex couplings. The latter include not
only the δ-couplings but also those with wavefunctions discontinuous at the
vertex. We work out the example of the symmetric δ′-couplings and make
a conjecture that the same method can be applied to all couplings invariant
with respect to the time reversal. We conclude with a result that certain vertex
couplings cannot be approximated by a pure Laplacian.

PACS numbers: 03.65.Db, 02.30.Jr, 02.30.Tb

1. Introduction

The quantum graph models represent a simple and versatile tool to study numerous physical
phenomena. The current state of the art in this field is described in the recent proceedings
volume [EKK+08] to which we refer for an extensive bibliography.

One of the big questions in this area is the physical meaning of quantum graph vertex
coupling. The general requirement of self-adjointness admits boundary conditions containing
a number of parameters, and one would like to understand how to choose these when a quantum
graph model is applied to a specific physical situation. One natural idea is to approximate the
graph in question by a family of ‘fat graphs’, i.e. tube-like manifolds built around the graph
‘skeleton’, equipped with a suitable second-order differential operator. Such systems have no
ad hoc parameters and one can try to find what vertex couplings arise when the manifold is
squeezed to the graph.
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The question is by no means easy and the answer depends on the type of the operator
chosen. If it is the Laplacian with Dirichlet boundary conditions one has to employ an energy
renormalization because the spectral threshold given by the lowest transverse eigenvalue blows
up to infinity as the tube diameter tends to zero. If one chooses the reference point between the
thresholds, the limiting boundary conditions are determined by the scattering on the respective
‘fat star’ manifold [MV07]. If, on the other hand, the threshold energy is subtracted, the limit
gives generically a decoupled graph, i.e. the family of edges with Dirichlet conditions at their
endpoints [P05, MV07, DT06]. One can nevertheless get a non-trivial coupling in the limit if
the tube network exhibits a threshold resonance [G08, ACF07], and moreover, using a more
involved limiting process one can get also boundary conditions with richer spectral properties
[CE07].

The case when the fat graph supports a Laplacian of Neumann type is better understood
and the limit of all types of spectra as well as of resonances has been worked out [FW93,
RS01, KuZ01, EP05, EP07, G08, EP08]. Moreover, convergence of resolvents, etc has
been shown in [Sai00, P06, EP07]. Of course, no energy renormalization is needed in this
case. On the other hand, the limit yields only the simplest boundary conditions called free or
Kirchhoff.

The aim of this paper is to show that one can do better in the Neumann case if the Laplacian
is replaced by suitable families of Schrödinger operators with properly scaled potentials. Such
approximations have been shown to work on graphs themselves [E96, ENZ01]; the main idea
here is to ‘lift’ them to the tube-like manifolds3. First we will show that using potentials
supported by the vertex regions of the manifold with the ‘natural’ scaling, as ε−1 where ε is
the tube radius parameter, we can get the so-called δ-coupling, the one-parameter family with
the wavefunctions continuous everywhere, including at the vertex. Note that this suggests, in
particular, that one cannot achieve such an approximation in a purely geometric way, with a
curvature-induced potential of the type [DEK01], because the latter scales typically as ε−2;
we will say more on that in the concluding remarks. As main result in this case, we show
the convergence of the spectra and the resolvents as the network branch widths shrink to zero.
(cf theorems 3.3–3.7).

On the other hand, the δ-coupling is only a small part in the set of all admissible couplings;
in a vertex joining n edges the boundary conditions contain n2 parameters. Here we use
the seminal idea of Cheon and Shigehara [CS98] applied to the graph case in [CE04] and
generalized in [ET06, ET07]. For the sake of simplicity we are going to work out in this paper
only the example of the so-called symmetric δ′-coupling, in short δ′

s, a one-parameter family
which is a counterpart of δ, by using the result of [CE04] and ‘lifting’ it to the manifold. We
show that such a coupling is approximated with a potential in the vertex region together with
potentials at the edges with compact supports approaching the vertex, all properly scaled, cf
theorem 4.7. The speed with which the potentials are ‘coming together’ must be slower than
that of the squeezing. In particular, the approximating potentials have distances of order εα

with 0 < α < 1/13, whereas the tube radius parameter is of order ε. The rate between the
two we obtain is surely not optimal.

We are convinced that in the same way one can lift to the manifolds the more general
limiting procedures devised in [ET07] which gives rise to a

(
n+1

2

)
-parameter family of boundary

conditions, namely those which are invariant with respect to the time reversal. We refrain
from working such a more general result, however, because such an extension would require
a voluminous work of algebraic nature. In order not to burden this paper with a complicated

4 This is not the only possibility; another approach to approximation of non-trivial vertex conditions was proposed
recently in [Pa07b, Pa07a].
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notation and bulky calculations, we state the claim as a conjecture here with the intention to
present the appropriate proofs in a later work.

Let us survey the contents of the paper. In the next section we define the graph and
manifold models and provide necessary estimates. In section 3 we prove the convergence
in the δ-coupling case. For the sake of clarity we analyse first in detail the star-shaped
graphs with a single vertex. The main result here is theorem 3.4 which states the rate
of resolvent convergence with an appropriate identification operator. As its corollaries we
get in theorems 3.5 and 3.6 convergence of different spectral components. Furthermore,
the approximation bears a local character which allows us to extend the result to more
complex graphs; the corresponding general result about graphs with δ-couplings is stated in
theorem 3.7. In section 4 we turn to the δ′

s-coupling case; for simplicity we restrict ourselves
to star graphs with a single vertex. The main result is again the resolvent convergence which
is stated in theorem 4.7. We conclude the paper with a short section in which we formulate the
conjecture about the general case and discuss the approximations from both the mathematical
and physical points of view.

2. The graph and manifold models

2.1. The graph model

Let us start with a star-shaped metric graph G having only one vertex v and deg v adjacent
edges e ∈ E of lengths �e ∈ (0,∞], so we can think of E = {1, . . . , deg v}. We identify the
(metric) edge e with the interval Ie := (0, �e) oriented in such a way that 0 corresponds to the
vertex v. Moreover, the metric graph G is given by the abstract space G := ·⋃

eI e/ ∼ where
·∪ denotes the disjoint union, and where the equivalence relation ∼ identifies the points 0 ∈ I e

with the vertex v. The basic Hilbert space is L2(G) := ⊕
e∈E L2(Ie) with norm given by

‖f ‖2 = ‖f ‖2
G =

∑
e∈E

∫ �e

0
|f (s)|2 ds.

The decoupled Sobolev space of order k is defined as

Hk
max(G) :=

⊕
e∈E

Hk(Ie)

together with its natural norm. Let p = {pe}e be a vector consisting of the weights pe > 0 for
e ∈ E. The Sobolev space associated with the weight p is given by

H1
p(G) := {

f ∈ H1
max(G)

∣∣f (v) ∈ Cp
}
, (2.1)

where f (v) := {fe(0)}e ∈ C
deg v is the evaluation vector of f at the vertex v and Cp is the

complex span of p. We use the notation

f (v) = f (v)p, i.e. fe(0) = f (v)pe (2.2)

for all e ∈ E. In particular, if p = (1, . . . , 1), we arrive at the continuous Sobolev space
H1(G) := H1

p(G). The standard Sobolev trace estimate

|g(0)|2 � a‖g′‖2
(0,�) +

2

a
‖g‖2

(0,�) (2.3)

for g ∈ H1(0, �) and 0 < a � � ensures that H1
p(G) is a closed subspace of H1

max(G), and
therefore itself a Hilbert space. A simple consequence is the following claim.

3
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Lemma 2.1. We have

|f (v)|2 � |p|−2

(
a‖f ′‖2

G +
2

a
‖f ‖2

G

)
for f ∈ H1

p(G) and 0 < a � �0 := mine∈E{�e, 1}.
We define various Laplacians on the metric graph via their quadratic forms. Let us start

with the (weighted) free Laplacian �G defined via the quadratic form d = dG given by

d(f ) := ‖f ′‖2
G =

∑
e

‖f ′
e‖2

Ie
and dom d := H1

p(G)

for a fixed p (the forms and the corresponding operators should be labelled by the weight
p, of course, but we drop the index, in particular, because we are most interested in the case
p = (1, . . . , 1)). Note that d is a closed form since the norm associated with the quadratic
form d is precisely the Sobolev norm given by ‖f ‖2

H1(G)
= ‖f ′‖2

G + ‖f ‖2
G.

The Laplacian with δ-coupling of strength q is defined via the quadratic form h = h(G,q)

given by

h(f ) := ‖f ′‖2
G + q(v)|f (v)|2 and dom h := H1

p(G). (2.4)

The δ-coupling is a ‘small’ perturbation of the free Laplacian, namely we have

Lemma 2.2. The form h(G,q) is relatively form-bounded with respect to the free form dG with
relative bound zero, i.e. for any η > 0 there exists Cη > 0 such that

|h(f ) − d(f )| = |q(v)||f (v)|2 � ηd(f ) + Cη‖f ‖2
G.

Proof. It is again a simple consequence of lemma 2.1. Since we need the precise behaviour
of the constant Cη, we give a short proof here. From lemma 2.1 we conclude that

|h(f ) − d(f )| � |q(v)||p|−2

(
ad(f ) +

2

a
‖f ‖2

G

)
.

for any 0 < a � �0. Set a := min{η|p|2/|q(v)|, �0} and

Cη := 2 max

{ |q(v)|2
η|p|4 ,

|q(v)|
�0|p|2

}
;

then the desired estimate follows. �

One can see that the norms associated with h and d are equivalent and, in particular,
setting η = 1/2 in the above estimate yields

Corollary 2.3. The quadratic form h is closed and obeys the estimate

d(f ) � 2
(
h(f ) + C1/2‖f ‖2

G

)
.

The operator H = H(G,q) associated with h acts as (Hf )e = −f ′′
e on each edge and a

function f in its domain satisfies the conditions

fe1(0)

pe1

= fe2(0)

pe2

=: f (v) and
∑

e

pef
′
e(0) = q(v)f (v) (2.5)

for any pair (e1, e2) of edges meeting at the vertex v. We use the formal notation

H = H(G,q) = �G + q(v)δv. (2.6)

4
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Note that the free operator �G, i.e. the operator with vanishing δ-coupling q = 0, is non-
negative by definition and satisfies the so-called weighted free or Kirchhoff vertex conditions.

In order to compare the ‘free’ quadratic form with the graph norm of H we need the
following estimate:

Lemma 2.4. We have

‖f ‖2
H1(G) = d(f ) + ‖f ‖2

G � 2 max{C1/2,
√

2}‖(H ∓ i)f ‖2
G

for f ∈ dom H ⊂ dom h = H1
p(G).

Proof. Using the estimate of corollary 2.3, we obtain

d(f ) + ‖f ‖2 � 2(h(f ) + (C1/2 + 1)‖f ‖2) � 2|h(f ) + ‖f ‖2| + 2C1/2‖f ‖2.

Moreover, the first term can be estimated as

|h(f ) + ‖f ‖2|2 � 2(h(f )2 + ‖f ‖4) = 2
∣∣h(f ) − i‖f ‖2

∣∣∣∣h(f ) + i‖f ‖2
∣∣

= 2|〈f, (H ∓ i)f 〉|2 � 2‖f ‖2‖(H ∓ i)f ‖2.

Finally, we apply the estimate ‖f ‖ � ‖(H ∓ i)f ‖ to obtain the result. �

Remark 2.5. Note that we have not said anything about the boundary conditions at the free
ends of the edges of finite length if there are any. As we employ the Sobolev space H1

p(G)

for the domain, we implicitly introduce Neumann conditions for the operator, f ′
e(�e) = 0.

However, one can choose any other condition at the free ends, or to construct more complicated
graphs by putting the star graphs together.

2.2. The manifold model of the ‘fat’ graph

Let us now define the other element of the approximation we are going to construct. For a
given ε ∈ (0, ε0] we associate a connected d-dimensional manifold Xε with the star graph G in
the following way. To the edge e ∈ E and the vertex v we ascribe the Riemannian manifolds

Xε,e := Ie × εYe and Xε,v := εXv, (2.7)

respectively, where εYe is a manifold Ye (called transverse manifold) equipped with the metric
hε,e := ε2he (see figure 1). More precisely, the so-called edge neighbourhood Xε,e and the
vertex neighbourhood εXε,v carry the metrics gε,e = d2s + ε2he and gε,v = ε2gv , where he

and gv are ε-independent metrics on Ye and Xv , respectively. Omitting the scaling parameter
ε in the notation conventionally means ε = 1, i.e. we denote by Xe = Xε,e, Xv = Xε,v ,
Ye = εYe, etc the Riemannian manifolds with ε = 1 in the metric. For convenience, we will
always use the ε-independent coordinates (s, y) ∈ Xe = Ie × Ye and x ∈ Xv , so that the
radius-type parameter ε only enters via the Riemannian metrics. Without loss of generality,
we may assume that each cross-section Ye is connected; otherwise we replace the edge e by as
many edges as is the number of connected components.

We assume that for each edge e, the vertex neighbourhood Xε,v has a boundary component
denoted by ∂eXε,v . Note that ∂eXε,v = ε∂eXv is isometric to the scaled transverse manifold
εYe. Fixing such an isometry and assuming that Xε,v has product structure (drawn in light
grey in figure 1) near each of the boundary components ∂eXε,v , we identify the boundary
component ∂vXε,e = {0} × εYe of the edge neighbourhood Xε,e with ∂eXε,v . In this way,
we obtain a smooth Riemannian manifold Xε from the components Xε,e (e ∈ E) and Xε,v .

5
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XG ε

v

e εε

Xε,v

Xε,e

∂eXε,v ∂vXε,e

Figure 1. A star graph G with three edges and the associated manifold model Xε with transversal
manifolds Ye being intervals. The vertex neighbourhood is drawn dark and light grey. The light
grey regions have product structure, and for each edge, we identify the boundary component ∂eXε,v

with ∂vXε,e = {0} × εYe .

Roughly speaking, the manifold Xε consists of the number deg v of straight cylinders4 with
cross-section εYe of radius ε attached to the central manifold Xε,v = εXv .

The entire manifold Xε may or may not have a boundary ∂Xε, depending on whether
there is at least one finite edge length �e < ∞ or one transverse manifold Ye has a non-empty

boundary. In such a situation, we assume that Xε = ◦
Xε ·∪ ∂Xε, i.e. ∂Xε ⊂ Xε. A particular

case is represented by embedded manifolds which deserve a comment.

Remark 2.6. Note that the above setting contains the case of the ε-neighbourhood of an
embedded graph G ⊂ R

2, but only up to a longitudinal error of order of ε. The manifold Xε

itself does not form an ε-neighbourhood of a metric graph embedded in some ambient space,
since the vertex neighbourhoods cannot be fixed in the ambient space unless one allows slightly
shortened edge neighbourhoods. Nevertheless, introducing ε-independent coordinates also in
the longitudinal direction simplifies the comparison of the Laplacian on the metric graph and
the manifold, and the error made is of order O(ε), as we will see in lemma 2.7 for a single
edge.

The basic Hilbert space of the manifold model is

L2(Xε) =
⊕

e

(L2(Ie) ⊗ L2(εYe)) ⊕ L2(εXv), (2.8)

with the norm given by

‖u‖2
Xε

=
∑
e∈E

εd−1
∫

Xe

|u|2 dye ds + εd

∫
Xv

|u|2 dxv,

where dxe = dye ds and dxv denote the Riemannian volume measures associated with the
(unscaled) manifolds Xe = Ie × Ye and Xv , respectively. In the last formula we have
employed the appropriate scaling behaviour, dxε,e = εd−1 dye ds and dxε,v = εd dxv .

Denote by H1(Xε) the Sobolev space of order 1, the completion of the space of smooth
functions with compact support under the norm given by ‖u‖2

H1(Xε)
= ‖du‖2

Xε
+ ‖u‖2

Xε
. As in

5 The straightness here refers to the intrinsic geometry only. We do not assume in general that the manifolds Xε are
embedded, for instance, into a Euclidean space, see also remark 2.6.
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the case of the metric graphs, we define the Laplacian �Xε
on Xε via its quadratic form

dε(u) := ‖du‖2
Xε

=
∑
e∈E

εd−1
∫

Xe

(
|u′(s, y)|2 +

1

ε2
|dYe

u|2he

)
dye ds + εd−2

∫
Xv

|du|2gv
dxv,

(2.9)

where u′ denotes the longitudinal derivative, u′ = ∂su, and du is the exterior derivative of u.
As before, the form dε is closed by definition. Adding a potential, we define the Hamiltonian
Hε as the operator associated with the form hε = h(Xε,Qε) given by

hε = ‖du‖2
Xε

+ 〈u,Qεu〉Xε
,

where the potential Qε has support only in the (unscaled) vertex neighbourhood Xv and

Qε(x) = 1

ε
Q(x), (2.10)

where Q = Q1 is a fixed bounded and measurable function on Xv . The reason for this
particular scaling will become clear in the proof of proposition 3.2. Roughly speaking, it
comes from the fact that vol Xε,v is of order εd , whereas the (d−1)-dimensional transverse
volume vol Yε,e is of order εd−1. The operators Hε and �ε are associated with forms hε and
dε, respectively; note that �ε = �Xε

� 0 is the usual (Neumann) Laplacian on Xε. As
usual the Neumann boundary condition occurs only in the operator domain if ∂Xε �= ∅. We
postpone for a moment the check that Hε is relatively form-bounded with respect to �Xε

, see
lemma 2.10 below.

Let us compare the two cylindrical neighbourhoods, Xε,e = I × εYe and X̃ε,e = Iε × εYe,
on edges of length � > 0 and �ε = (1 − ε)�, respectively. The result for the entire space Xε

then follows by combining the estimates on the edges and the fact that the potential is only
supported on the vertex neighbourhoods. The verification of the δε-quasi-unitary equivalence
in the next lemma is straightforward; for a proof we refer to [P09, proposition 5.3.10].5

Lemma 2.7. Let He := L2(Xε,e) and H̃e := L2(X̃ε,e). Moreover, define

Je : He −→ H̃e (Jef )(̃s, y) := f ((1 − ε)−1s̃, y),

J ′
e : H̃e −→ H (J ′

eu)(s, y) := u((1 − ε)s, y).

Then the quadratic forms dε(f ) := ‖f ‖2
Xε,e

and d̃ε(u) := ‖u‖2
X̃ε,e

with dom dε = H1(Xε,e)

and dom d̃ε = H1(X̃ε,e) are δε-quasi-unitarily equivalent with δε = 2ε/(1 − ε)1/2; namely, we
have J ′

eJe = id, JeJ
′
e = id, ‖Je‖ � 1, ‖J ′

e‖ � 1 + δε,

‖J ′
e − J ∗

e ‖ � δε and |̃dε(Jef, u) − dε(f, J ′
eu)| � δε‖f ‖H1(G)‖u‖H1(Xε).

In particular, we get∥∥(�
X̃ε,e

+ 1
)−1 − Je

(
�Xε,e

+ 1
)−1

J ′
e

∥∥ � 2δε = O(ε).

For the verification of the quasi-unitary equivalence of the graph and manifold Hamiltonian
in the next section, we need some more notation and estimates. The estimates are already
provided in [EP05, P06], but we will also need a precise control of the edge length, when we
approximate the δ′

s-coupling by δ-couplings in section 4 below. Therefore, we present short
proofs of the estimate here.

6 Note that we used a slightly different notation in [P06, appendix], where δ-quasi unitary equivalence was called
δ-closeness.

7
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We first introduce the following averaging operators∫
–

v
u :=

∫
–

Xv

u dxv and
∫
–

e
u(s) :=

∫
–

Ye

u(s, ·) dye

for u ∈ L2(Xε), where∫
–

M

u dx := 1

vol M

∫
M

u dx

denotes the normalized integral for u ∈ L2(M) on the manifold M (for the existence of the
trace u(s, ·) ∈ L2(Ye) for all s ∈ Ie, one needs an estimate similar to (2.12)).

In order to obtain the below Sobolev trace estimate below, we need a further decomposition
of the vertex neighbourhood Xv . Recall that Xv has (deg v)-many boundary components
isometric to Ye. We assume that each such boundary component has a collar neighbourhood
Xv,e = (0, �e) × Ye of length �e. Note that the scaled vertex neighbourhood Xε,v = εXv is of
order ε in all directions, so that the scaled collar neighbourhoods Xε,v,e := εXv,e are of length
ε�e. We can always assume that such a decomposition exists, by possibly using a different cut
of the manifold X into Xv and Xe, the price being an additional longitudinal error of order ε

(see lemma 2.7). Similarly as in (2.3), one can get the following Sobolev trace estimates for
the scaled manifolds:

‖u‖2
∂eXε,v

� ε̃a‖du‖2
Xε,v,e

+
2

ε̃a
‖u‖2

Xε,v,e
(2.11)

‖u‖2
∂vXε,e

� a‖u′‖2
Xε,e

+
2

a
‖u‖2

Xε,e
(2.12)

for 0 < a, ã � �e on the vertex and edge neighbourhood, respectively, where u′ = ∂su denotes
the longitudinal derivative. The unscaled versions are obtained, of course, by setting ε = 1.
Moreover, by the Cauchy–Schwarz inequality we get

vol Ye

∣∣∫–
e
u(0)

∣∣2 � ‖u‖2
∂eXv

= ‖u‖2
∂vXe

.

In the following lemma we compare the averaging over the boundary of Xv with the
averaging over the whole space Xv .

Lemma 2.8. For u ∈ H1(Xv), we have

vol ∂Xv

∣∣∫–
∂Xv

u − ∫
–

v
u
∣∣2 �

∑
e∈E

vol ∂eXv

∣∣∫–
∂eXv

u − ∫
–

v
u
∣∣2 �

(
1 +

2

�0λ2(v)

)
‖du‖2

Xv
,

where �0 = mine{�e, 1}, and where λ2(v) denotes the second (i.e. first non-zero) eigenvalue of
the Neumann Laplacian on Xv ; the latter is defined conventionally as the operator associated
with the form dv(u) := ‖du‖2

Xv
with the domain dom dv := H1(Xv).

Proof. Using the Cauchy–Schwarz inequality and the estimate (2.11) for each edge e with
ε = 1 and ã = �0, we obtain

vol ∂Xv

∣∣∫–
∂Xv

w
∣∣2 =

∑
e

vol ∂eXv

∣∣∫–
∂eXv

w
∣∣2 � ‖w‖2

∂Xv
� ‖dw‖2

Xv
+

2

�0
‖w‖2

Xv
. (2.13)

We apply the above estimate to the function w = Pvu := u − ∫
–

v
u and observe that

‖w‖2
Xv

� 1

λ2(v)
‖dw‖2

Xv
, (2.14)

as one can check using the fact that dw = du and that Pv is the projection onto the orthogonal
complement of the first eigenfunction −11v ∈ L2(Xv). �

8
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We also need an estimate over the vertex neighbourhood. It will assure that in the limit
ε → 0, no family of normalized eigenfunctions (uε)ε with eigenvalues lying in a bounded
interval can concentrate on Xε,v .

Lemma 2.9. We have

‖u‖2
Xε,v

� ε2C(v)‖du‖2
Xε,v

+ 4εcvol

[
a‖u′‖2

Xε,E
+

2

a
‖u‖2

Xε,E

]
for 0 < a � �0 = mine{�e, 1}, where C(v) := C(v, �0) = 4

[
1

λ2(v)
+ cvol

(
1 + 2

�0λ2(v)

)]
,

cvol := vol Xv/vol ∂Xv and Xε,E := ·⋃ eXε,e denotes the union of all edge neighbourhoods.

Proof. We start with the estimate

‖u‖2
Xε,v

� 2εd
(‖u − ∫

–
v
u‖2

Xv
+ ‖∫–

v
u‖2

Xv

)
� 2εd

(
2

λ2(v)
‖du‖2

Xv
+ vol Xv

∣∣∫–
v
u
∣∣2)

using (2.14) and the fact that
∫
–

v
u is constant. Moreover, the last term can be estimated by

vol ∂Xv

∣∣∫–
v
u
∣∣2 � 2vol ∂Xv

(∣∣∫–
v
u − ∫

–
∂Xv

u
∣∣2 +

∣∣∫–
∂Xv

u
∣∣2)

� 2

(
1 +

2

�0λ2(v)

)
‖du‖2

Xv
+
∑

e

vol ∂eXv

∣∣∫–
∂eXv

u
∣∣2

using lemma 2.8. Since ∂eXv is isometric to ∂vXe = {0} × Ye by assumption, we can estimate
the latter sum by∑

e

vol ∂vXe

∣∣∫–
∂eXv

u
∣∣2 �

∑
e

‖u‖2
∂vXe

� a‖u′‖2
XE

+
2

a
‖u‖2

XE

due to (2.12) for ε = 1 and 0 < a � �0 on each edge e. Here, XE := X1,E is the union of the
unscaled edge neighbourhoods. The desired estimate then follows from the scaling behaviour
‖du‖2

Xε,v
= εd−2‖du‖2

Xv
and ‖w‖2

Xε,e
= εd−1‖w‖2

Xe
for w = u or w = u′ (where u′ = ∂su

denotes the longitudinal derivative). �

We are now able to prove the relative (form-)boundedness of the Hamiltonian Hε with
respect to the Laplacian �Xε

for the indicated class of potentials. It will be of particular
importance to have a precise control of the constants εη and C̃η in terms of the various
parameters of our spaces, when we deal with the approximation of the δ′

s-coupling by δ-
couplings with shrinking spacing a = εα in section 4 below.

Lemma 2.10. To a given η ∈ (0, 1) there exists εη > 0 such that the form hε is relatively
form-bounded with respect to the free form dε with relative bound η for all ε ∈ (0, εη], in
other words, there exists C̃η > 0 such that

|hε(u) − dε(u)| � ηdε(u) + C̃η‖u‖2
Xε

whenever 0 < ε � εη, where the constants εη and C̃η are given by

εη := η

‖Q‖∞C(v)
and C̃η := 8cvol‖Q‖∞ max

{
4cvol‖Q‖∞

η
,

1

�0

}
(2.15)

and fulfil εη = O(�0) and C̃η = O
(
�−1

0

)
as �0 → 0.

Proof. The potential Qε = ε−1Q is by assumption supported on the vertex neighbourhood
Xv , therefore we have

|hε(f ) − dε(f )| � ‖Q‖∞
ε

‖u‖2
Xε,v

� ‖Q‖∞
(
εC(v)‖du‖2

Xε,v
+ 4acvol‖u′‖2

Xε,E

)
+

8‖Q‖∞cvol

a
‖u‖2

Xε,E

9
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using lemma 2.9, for 0 < a � �0. Choosing a = min{�0, η(4cvol‖Q‖∞)−1} and 0 < ε � εη

with εη as above, we can estimate the quadratic form contributions by

η
(‖du‖2

Xε,v
+ ‖u′‖2

Xε,E

)
� η‖du‖2

Xε
.

The expression for C̃η then follows by evaluating the coefficient of the remaining norm. �

We need to estimate the ‘free’ quadratic form against the form associated with the
Hamiltonian:

Corollary 2.11. The quadratic form hε is closed. Moreover, setting η = 1/2, we get the
estimate

dε(u) � 2
(
hε(u) + C̃1/2‖u‖2

Xε

)
which holds provided 0 < ε � ε1/2.

As in lemma 2.4, we can prove the following estimate in order to compare the ‘free’
quadratic form with the graph norm of Hε:

Lemma 2.12. We have

‖u‖2
H1(Xε)

= dε(u) + ‖u‖2
Xε

� 2 max{C̃1/2,
√

2}‖(Hε ∓ i)u‖2
Xε

for u ∈ dom Hε ⊂ dom hε = H1(Xε) and 0 < ε � ε0.

3. Approximation of δ-couplings

After these preliminaries we can pass to our main problems. The first one concerns
approximation of a δ-coupling by Schrödinger operators with scaled potentials supported
by the vertex regions. For the sake of simplicity most of the discussion will be done for the
situation with a single vertex as described in section 2.

3.1. Quasi-unitary identification operators

First, we need some notation how to compare operators and forms acting in different Hilbert
spaces. We say that the quadratic forms h and hε are δε-quasi-unitarily equivalent w.r.t. the
free first-order scale6 if there are identification operators

J : H −→ Hε, J 1: H 1 −→ H 1
ε and J ′1: H 1

ε −→ H 1,

called δε-quasi-unitary if

‖Jf − J 1f ‖2 � δ2
ε‖f ‖2

H1(G), ‖J ∗u − J ′1u‖2 � δ2
ε‖u‖2

H1(Xε)
, (3.1a)

J ∗Jf = f, ‖JJ ∗u − u‖2 � δ2
ε‖u‖2

H1(Xε)
, (3.1b)

|h(J ′1u, f ) − hε(u, J 1f )| � δε‖u‖H1(Xε)‖f ‖H1(G). (3.1c)

Here,

H := L2(G), H 1 := H1(G), Hε := L2(Xε), H 1
ε := H1(Xε). (3.2)

The attribute free first-order scale refers to the fact that we use the first-order space
H 1 := H1(G) with norm using the free Laplacian, and similarly on the manifold. Note

7 We use a slightly different notation w.r.t. the monograph [P09, chapter 4] and the appendix of [P06], in order to
simplify matters here.

10
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that the attribute δε-quasi-unitary refers to the fact that we have a quantitative generalization
of unitary operators. In particular, if δε = 0, then a δε-quasi-unitary operator is just unitary.
A general spectral theory for quasi-unitary equivalent operators is developed in a simple form
in [P06, App.] and in a more elaborated version in [P09, chapter 4].

We need a relation between the different constants of the graph and the manifold model
introduced above. Specifically, we set

pe := (vold−1Ye)
1/2 and q(v) =

∫
Xv

Q dxv. (3.3)

Let us now fix the quasi-unitary operators by a natural choice: Let J : H −→ Hε be given by

Jf := ε−(d−1)/2
⊕
e∈E

(fe ⊗ −11e) ⊕ 0 (3.4)

with respect to the decomposition (2.8). Here −11e is the normalized eigenfunction of Ye

associated with the lowest (zero) eigenvalue, i.e −11e(y) = (vold−1Ye)
−1/2. Roughly speaking,

we extend a function constantly in its transversal direction on the edge neighbourhoods and
set it zero on the vertex neighbourhood.

In order to relate the Sobolev spaces of order one we correct the error made at the
vertex neighbourhood by fixing the function to be constant there. Namely, we define
J 1 : H 1 −→ H 1

ε by

J 1f := ε−(d−1)/2
(⊕

e∈E

(fe ⊗ −11e) ⊕ f (v)−11v

)
, (3.5)

where −11v is the constant function on Xv with value 1. Note that the latter operator is well
defined:

(J 1f )e(0, y) = ε−(d−1)/2p−1
e fe(0) = ε−(d−1)/2f (v) = (J 1f )v(x)

for any x ∈ Xv due to (3.3) and (2.2). In particular, the function J 1f matches along the
different components of the manifold, thus J 1f ∈ H1(Xε). Moreover, f (v) is defined for
f ∈ H1(G) (see lemma 2.1).

The mapping in the opposite direction is given by the adjoint, J ∗: Hε −→ H , which
means that we average a function in transversal direction, i.e.

(J ∗u)e(s) = ε(d−1)/2pe

∫
–

e
u(s). (3.6)

Furthermore, we modify J ∗ on the first-order spaces to an operator J ′1: H 1
ε −→ H 1 given

by (
J ′1

e u
)
(s) := ε(d−1)/2pe

[∫
–

e
u(s) + χe(s)(

∫
–

v
u − ∫

–
e
u(0))

]
, (3.7)

which differs from J ∗f only by a correction near the vertices. Here χe is a Lipschitz
continuous cut-off function on the edge Ie such that χe(0) = 1 and χe(�e) = 0. If we choose
the function χe to be piecewise affine linear with χe(0) = 1, χe(�0) = 0 and χe(�e) = 0,
then ‖χe‖2

Ie
= �0/3 � �0 and ‖χ ′

e‖2
Ie

= �−1
0 . Moreover,

(
J ′1

e u
)
e
(0) = ε(d−1)/2pe

∫
–

v
u so that

f := J ′1u satisfies f (0) ∈ Cp, and therefore f ∈ H1
p(G), i.e. J ′1u indeed maps into the right

space. Note that by construction of the manifold, we have
∫
–

∂eXv
u = ∫

–
e
u(0).

3.2. Quasi-unitary equivalence

In this subsection, we will verify the conditions (3.1) of quasi-unitary equivalence. We start
this subsection with a lower bound on the operators H and Hε in terms of the model parameters;
for the definitions of the constants C1/2, ε1/2 and C̃1/2 see lemma 2.2 and lemma 2.10. Note
that C̃1/2 still depends on ‖Q‖∞ and �0.

11
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Lemma 3.1. For ε ∈ (0, ε1/2] the operators Hε and H are bounded from below by
λ0 := −C̃1/2. Moreover, if all lengths are finite, i.e. �e < ∞, and q(v) � 0, then we have

inf σ(H) � q(v)

vol XE

and inf σ(Hε) � q(v)

vol XE + ε vol Xv

,

where XE := ·⋃ eXe is the union of the edge neighbourhoods.

Proof. Due to (3.3) we have |p|2 = vol ∂Xv and |q(v)| = ∣∣∫
Xv

Q dxv

∣∣ � ‖Q‖∞vol Xv so
that

C1/2 � max

{
4c2

vol‖Q‖2
∞,

2cvol‖Q‖∞
�0

}
� C̃1/2 = max

{
64c2

vol‖Q‖2
∞,

8cvol‖Q‖∞
�0

}
, (3.8)

where we recall that cvol = vol Xv/vol ∂Xv . The spectral estimates then follow by inserting
suitable test functions into the Rayleigh quotients h(f )/‖f ‖2 and hε(u)/‖u‖2. For f , we
choose the edgewise constant function fe(x) = pe. Note that f ∈ H1

p(G). On the manifold,

we choose the constant u := J 1f = ε(d−1)/2−11. The upper bound on the infimum on the
spectrum follows by the relation �ep

2
e = vol Xe using (3.3). �

Now we are in position to demonstrate that the two Hamiltonians are quasi-unitary
equivalent in the sense of 3.1, i.e. we estimate the expressions with the identification operators
and the forms h, hε in terms of the ‘free’ quadratic forms d and dε. The precise dependence
of the error δε on the model parameters will be needed in section 4.

Proposition 3.2. The quadratic forms hε and h are δε-quasi-unitary equivalent w.r.t. free
first-order scale and the identification operators J, J1, J ′1 given above, where δε = O(ε1/2)

as ε → 0. In particular, δε is given explicitly by

δ2
ε := max

{
8εcvol

�0
,

ε2

λ2(E)
, ε2C(v),

2ε

�0

(
1 +

2

�0λ2(v)

)
,

4εcvol‖Q‖2
∞

�0λ2(v)

}
. (3.9)

Here, �0 = mine{1, �e}, λ2(E) := mine λ2(e) and cvol = vol Xv/vol ∂Xv . Moreover, λ2(e)

and λ2(v) denote the second (first non-vanishing) eigenvalue of the (Neumann-)Laplacian on
Ye and Xv , respectively, and C(v) was defined in lemma 2.9.

Proof. The first condition in (3.1a) is here

‖Jf − J 1f ‖2
Xε

= ε vol Xv|f (v)|2 � εcvol

(
‖f ′‖2

G +
2

�0
‖f ‖2

G

)
using lemma 2.1 with a = �0 � 1 and the fact that |p|2 = vol ∂Xv due to (3.3). Next we need
to show the second estimate in (3.1a). In our situation, we have

‖J ∗u − J ′1u‖2
G = εd−1

∑
e∈E

‖χe‖2
Ie
p2

e

∣∣∫–
v
u − ∫

–
e
u(0)

∣∣2 � ε

(
1 +

2

�0λ2(v)

)
‖du‖2

Xε,v
(3.10)

using lemma 2.8. Moreover, the first equation in (3.1b) is easily seen to be fulfilled. The
second estimate in (3.1b) is more involved. Here, we have

‖JJ ∗u − u‖2 =
∑

e

‖u − ∫
–

e
u‖2

Xε,e
+ ‖u‖2

Xε,v
.

The first term can be estimated as in (2.14) by

‖u − ∫
–

e
u‖2

Xε,e
=
∫

Ie

‖u(s) − ∫
–

e
u(s)‖2

Ye
ds � 1

λ2(e)

∫
Ie

‖dYe
u(s)‖2

Ye
ds = ε2

λ2(e)
‖dYe

u‖2
Xε,e

,

12
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where u(s) := u(s, ·). The second term can be estimated by lemma 2.9. In particular, for the
inequality in (3.1b), the first, second and third term in the definition of δε are sufficient.

Let us finally prove (3.1c) in our model. Note that this estimate differs from the ones
given in [P06] by the absence of the potential term Qε = ε−1Q there. In our situation, we
have

|h(J ′1u, f ) − hε(u, J 1f )|2

� 2εd−1

[∣∣∣∣∣∑
e

pe

(∫
–

v
u − ∫

–
e
u(0)

)〈χ ′
e, f

′〉Ie

∣∣∣∣∣
2

+
∣∣q(v)

∫
–

v
u − 〈Qu,−11v〉Xv

∣∣2|f (v)|2
]
.

Note that the derivative terms cancel on the edges due to the product structure of the metric
and the fact that dYe

−11e = 0 and the vertex contribution vanishes due to dXv
−11v = 0. The first

term can be estimated as before in (3.10) up to an additional factor 2�−1
0 . For the second term,

we use our definition q(v) = ∫
Xv

Q dxv and the fact that q(v)
∫
–

v
u = 〈

u,
∫
–

v
Q−11v

〉
Xv

to conclude∣∣q(v)
∫
–

v
u − 〈Qu,−11v〉Xv

∣∣2 = ∣∣〈u,
∫
–

v
Q − Q

〉
Xv

∣∣2
= ∣∣〈u, PvQ〉Xv

∣∣2 = ∣∣〈Pvu,Q〉Xv

∣∣2 � 1

λ2(v)
‖du‖2

Xv
‖Q‖2

Xv
,

where Pvu := u − ∫
–

v
u is the projection onto the orthogonal complement of −11v . The last

estimate follows from (2.14). Collecting the error terms for the sesquilinear form estimate,
we see that the forth and fifth term in the definition of δε are necessary as lower bound on δε,
using also lemma 2.1 for the estimate on |f (v)|2, and ‖Q‖2

Xv
� vol Xv‖Q‖2

∞. �

Now we can prove our main result on the approximation of a δ-coupling in the manifold
model. We say that the graph and manifold Hamiltonians H and Hε are δ̃ε-quasi-unitarily
equivalent w.r.t. the natural scale of Hilbert spaces generated by H and Hε or simply δ̃ε-quasi-
unitarily equivalent, if there is an identification operator J : L2(G) −→ L2(Xε) such that
J ∗J = id, ∥∥(id − JJ ∗)R±

ε

∥∥ � δ̃ε and
∥∥JR± − R±

ε J
∥∥ � δ̃ε, (3.11)

where ‖·‖ denotes the operator norm, and where R± := (H ∓ i)−1 and R±
ε := (Hε ∓ i)−1

denote the resolvents, respectively. The resolvent estimates are supposed to hold for both
signs; the deviation δ̃ε � 0 from being unitarily equivalent will be specified in the next
theorem. We use the resolvent in the points z = ±i since in section 4, the lower bound λ0 on
Hε will depend on ε and may tend to −∞ as ε → 0. Recall the definition of C̃1/2, ε1/2 (see
(2.15)) and λ0 := −C̃1/2.

Theorem 3.3. For ε ∈ (0, ε1/2], the operators Hε and H are δ̃ε-quasi-unitarily equivalent
with δ̃ε = 10δε max{C̃1/2,

√
2} = O(ε1/2), where δε is given in (3.9).

Proof. The first norm estimate in (3.11) follows from (3.1b) shown in proposition 3.2. The
second norm estimate can be seen as follows: Let f̃ ∈ L2(G), ũ ∈ L2(Xε). Setting f :=
R±f̃ ∈ dom H and u := R∓

ε ũ ∈ dom Hε, we have〈̃
u,
(
JR± − R±

ε J
)
f̃
〉 = 〈̃u, Jf 〉 − 〈u, J f̃ 〉

= 〈̃u, (J − J 1)f 〉 + (hε(u, J 1f ) − h(J ′1u, f )) + 〈(J ′1 − J ∗)u, f̃ 〉
− i(〈u, (J 1 − J )f 〉 + 〈(J ′1 − J ∗)u, f 〉),

and therefore

|〈̃u, (JR± − R±
ε J )f̃ 〉| � 10δε max{C̃1/2,

√
2}‖f̃ ‖‖̃u‖

13
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using the estimates (3.1) shown in proposition 3.2 together with lemmata 2.4 and 2.12, and
the fact that C1/2 � C̃1/2. �

Once we have the estimates of the quasi-unitary equivalence in (3.11), we can extend the
estimates to other functions of the operators. This is done in detail in [P06, App. A] or more
evolved in [P09, chapter 4] (see also remark 4.8).

Theorem 3.4. We have

‖J (H − z)−1 − (Hε − z)−1J‖ = O(ε1/2), (3.12a)

‖J (H − z)−1J ∗ − (Hε − z)−1‖ = O(ε1/2) (3.12b)

for z /∈ [λ0,∞). The error depends only on δε, given in (3.9), and on z. Moreover, we can
replace the function ϕ(λ) = (λ − z)−1 by any measurable, bounded function converging to a
constant as λ → ∞ and being continuous in a neighbourhood of σ(H).

The following spectral convergence is also a consequence of the O(ε1/2)-quasi-unitary
equivalence (see e.g. [P06, theorem A.13] or [P09, section 4.3]). For details of the uniform
convergence of sets, i.e. the convergence in Hausdorff-distance sense we refer to [HN99,
App. A] or [P09, App. A.1].

Theorem 3.5. The spectrum of Hε converges to the spectrum of H uniformly on any finite
energy interval. The same is true for the essential spectrum.

Proof. The spectral convergence is a direct consequence of the quasi-unitary equivalence,
see the theory developed in [P06, appendix] and [P09, chapter 4]. �

For the discrete spectrum we have the following result:

Theorem 3.6. For any λ ∈ σdisc(H) there exists a family {λε}ε with λε ∈ σdisc(Hε) such that
λε → λ as ε → 0. Moreover, the multiplicity is preserved. If λ is a simple eigenvalue with
normalized eigenfunction ϕ, then there exists a family of simple normalized eigenfunctions
{ϕε}ε of Hε (ε small) such that

‖Jϕ − ϕε‖Xε
→ 0

as ε → 0.

We remark that the convergence of higher-dimensional eigenspaces is also valid, however,
it requires some technicalities which we skip here.

To summarize, we have shown that the δ-coupling with weighted entries can be
approximated by a geometric setting and a potential located on the vertex neighbourhood.

Let us briefly sketch how to extend the above convergence results theorems 3.3–3.6 to
more complicated—even to non-compact—graphs. Denote by G a metric graph, given by the
underlying discrete graph (V ,E, ∂) with ∂ : E −→ V × V , ∂e = (∂−e, ∂+e) denoting the
initial and terminal vertex, and the length function �: E −→ (0,∞), such that each edge e
is identified with the interval Ie = (0, �e) (for simplicity, we assume here that all length are
finite, i.e. �e < ∞). Let Xε be the corresponding approximating manifold constructed from
the building blocks Xε,e = Ie × εYe and Xε,v = εXv as in section 2.2. For more details, we
refer to [EP05, P06, EP08, P09]. Since a metric graph can be constructed from a number
of star graphs with identified endpoints of the free ends, we can define global identification
operators. We only have to assure that the global error we make is still uniformly bounded:

14



J. Phys. A: Math. Theor. 42 (2009) 415305 P Exner and O Post

Theorem 3.7. Assume that G is a metric graph and Xε the corresponding approximating
manifold constructed according to G. If

inf
v∈V

λ2(v) > 0, sup
v∈V

vol Xv

vol ∂Xv

< ∞, sup
v∈V

‖Q�Xv
‖∞ < ∞, inf

e∈E
λ2(e) > 0, inf

e∈E
�e > 0,

then the corresponding Hamiltonians H = �G +
∑

v q(v)δv and Hε = �Xε
+
∑

v ε−1Q�Xv

are δ̃ε-quasi-unitarily equivalent, where the error δ̃ε = O(ε1/2) depends only on the above
mentioned global constants.

4. Approximation of the δ′
s-couplings

The main aim of this section is to show how the symmetrized δ′-coupling, or δ′
s, can be

approximated using the manifold model discussed above. To this aim we shall use a result
of [CE04] by which a δ′

s-coupling can be approximated by means of several δ-couplings
on the same metric graph, located close to the vertex and ‘lift’ this approximation to the
manifold. For the sake of simplicity we will again consider the star-shape setting with a single
vertex. We believe, however, that the method we use can be directly generalized to more
complicated graphs but also, what is equally important, to other vertex couplings, once they
can be approximated by combinations of δ-couplings on the graph, possibly with an addition
of extra edges—see [ET06, ET07].

Let thus G be a star graph as in section 2 where we denote the vertex in the centre by v0

and where we label the n = deg v edges by e = 1, . . . , n. Again for simplicity, we assume
that all the (unscaled) transverse volumes p2

e = vol Ye are the same; without loss of generality
we may put vol Ye = 1. Moreover, we assume that all lengths are finite, i.e. �e < ∞, and
equal, so we may put �e = 1. First we recall the definition of the δ′

s-coupling: the operator
Hβ , formally written as Hβ = �G + βδ′

v0
, acts as (Hβf )e = −f ′′

e on each edge for functions
f in the domain:

dom Hβ :=
{
f ∈ H2

max(G)

∣∣∣∣∀e1, e2 : f ′
e1
(0) = f ′

e2
(0) =: f ′(0),∑

e

fe(0) = βf ′(0), ∀ e : f ′
e(�e) = 0

}
. (4.1)

For the sake of definiteness we imposed here Neumann conditions at the free ends of the
edges. However, the choice is not substantial; we could use equally well Dirichlet or any other
boundary condition. The corresponding quadratic form is given as

hβ(f ) =
∑

e

‖f ′
e‖2 +

1

β

∣∣∣∣∑
e

fe(0)

∣∣∣∣2, dom hβ = H1
max(G)

if β �= 0 and

hβ(f ) =
∑

e

‖f ′
e‖2, dom hβ =

{
f ∈ H1

max(G)

∣∣∣∣∣∑
e

fe(0) = 0

}
if β = 0; the condition f ∈ H 0 is obviously dual to the free (or Kirchhoff) vertex coupling—
see, e.g., [Ku04, section 3.2.3].

The (negative) spectrum of Hβ is easily found.

Lemma 4.1. If β � 0, then Hβ � 0. On the other hand, if β < 0, then Hβ has exactly one
negative eigenvalue λ = −κ2 where κ is the solution of the equation

cosh κ +
βκ

deg v
sinh κ = 0. (4.2)
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XεG

aε = εα

v0 veea e1

ε

εα

ε ε

Xε,veXε,eε Xε,e1

Xε,v0

Figure 2. The intermediate graph picture used in the δ′
s-approximation and the corresponding

manifold model.

Proof. The non-negativity of Hβ follows from the quadratic form expression for β > 0 and
β = 0. We make the ansatz

fe(s) = cosh κ(1 − s)

fulfilling automatically the Neumann condition at s = 1 and the continuity condition at s = 0
since f ′

e(0) = −κ sinh κ is independent of e. The remaining condition at zero leads to the
above relation between κ and β, showing in another way that if β � 0 there cannot exist a
negative eigenvalue. �

The main idea behind the approximation of a δ′
s-coupling by Schrödinger operators on a

manifold is to employ a combination of δ-couplings in an operator one may call an intermediate
Hamiltonian Hβ,a , and then to use the approximations for δ-couplings given in the previous
section.

In order to define Hβ,a , we first modify the (discrete) structure of the graph G inserting
additional vertices ve of degree 2 on the edge e with the distance a ∈ (0, 1) from the central
vertex v0 (see figure 2). Each edge e is split into two edges ea and e1. We denote the metric graph
with the additional vertices ve and split edges by Ga, i.e. V (Ga) = {v0} ∪ {ve|e = 1, . . . , n},
E(Ga) = {ea, e1|e = 1, . . . n} and �ea

= a, �e1 = 1 − a. This metrically equivalent graph
Ga will be needed when associating the corresponding manifold. As vertex conditions on the
additional vertices ve we use the unweighted free conditions.

Remark 4.2. It is useful to note that the Laplacians �G and �Ga
associated with the metric

graphs G and Ga are unitarily equivalent. Indeed, introducing additional vertices of degree
2 with (unweighted) free conditions does not change the original quadratic form dG with
the domain H1(G) = dom d associated with the free operator �G = H(G,0). Figuratively
speaking, the free operator does not see these vertices of degree 2. We just have to change the
coordinate on the edge e, i.e. we can either use the original coordinate s ∈ (0, �e) on the edge
e or we can split the edge e into two edges ea and e1 of length �ea

= a and �e1 = �e −a = 1−a

with the corresponding coordinates.

The core of the approximation lies in a suitable, a-dependent choice of the parameters of
these δ-couplings. Writing the operator in terms of the formal notation introduced in (2.6),
we put

Hβ,a := �G + b(a)δv0 +
∑

e

c(a)δve
, b(a) = − β

a2
, c(a) = −1

a
,
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to be the intermediate Hamiltonian. Note that the strength of the central δ-coupling depends
on β while the added δ-interactions are attractive, the sole parameter being the distance a. The
operator can be defined via its quadratic form

hβ,a(f ) :=
∑

e

‖f ′
e‖2 − β

a2
|f (0)|2 − 1

a

∑
e

|fe(a)|2, dom ha = H1(G),

where H1(G) = H1
p(G) with p = (1, . . . , 1), i.e. the functions f ∈ H1(G) are distinguished

by being continuous at v0, fe1(0) = fe2(0) =: f (0).
The next theorem shows that the intermediate Hamiltonian converges indeed to the δ′

s-
coupling with the strength β on the star-shaped graph.

Theorem 4.3 (Cheon, Exner). We have

‖(Hβ,a − z)−1 − (Hβ − z)−1‖ = O(a)

as a → 0 for z /∈ R, where ‖·‖ denotes the operator norm on L2(G).7

Note that the choice of the parameters b(a) c(a) of the δ-interactions as functions of the
distance a follows from a careful analysis of the resolvents of Hβ,a and Hβ . Each of these is
highly singular as a → 0; however, in the difference all the singularities cancel leaving us with
a vanishing expression. Needless to say that such a limiting process is highly non-generic.

Let us now consider the manifold model approaching the intermediate Hamiltonian Hβ,a

in the limit ε → 0 with a = aε = εα and 0 < α < 1 to be specified later on. Let Xε be
a manifold model of the graph G as shown in figure 2. For the additional vertices of degree
2 we choose the vertex neighbourhoods as a part of the cylinder of length ε and distance of
order of aε from the central vertex v0. The edge eaε

now has the length aε = εα depending on
ε. The ‘free’ edge e1 joining ve with the free endpoint at s = 1 is again ε-dependent, namely
it has the length 1 − aε = 1 − εα . By the argument given in lemma 2.7 we can deal with this
error and assume that this edge again has length one, the price being an extra error of order
O(εα), affecting neither the final result nor the quantitative error estimate. Next we have to
choose the potentials in the vicinity of the vertices v = v0 and v = ve. The simplest option is
to assume that they are constant,

Qε,v(x) := 1

ε
· qε(v)

vol Xv

, x ∈ Xv

so that
∫
Xv

Qε,v dx = ε−1qε(v) (see (2.10) and (3.3)), where we put

qε(v0) := b(εα) = −βε−2α and qε(ve) := c(εα) = −ε−α.

The corresponding manifold Hamiltonian and the respective quadratic form are then given by

Hβ
ε = �Xε

− ε−1−2α β

vol Xv0

−11Xv0
− ε−1−α

∑
e∈E

−11Xve
(4.3)

and

hβ
ε (u) = ‖du‖2

Xε
− ε−1−2α β

vol Xv0

‖u‖2
Xε,v0

− ε−1−α
∑
e∈E

‖u‖2
Xε,ve

,

respectively. Note that the unscaled vertex neighbourhood Xve
of the added vertex ve has

volume 1 by construction.

8 The claim made in [CE04] is only that the norm tends to zero, however, the rate with which it vanishes is obvious
from the proof. We remove the superfluous deg v from the definition of Hβ,a in that paper. It should also be noted
that the proof in [CE04] is given for star graphs with semi-infinite edges but the argument again modifies easily to the
finite-length situation we consider here.
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Before proceeding to the approximation itself, let us first make some comments about the
lower bounds of the operators Hβ,a and their manifold approximations Hβ

ε :

Lemma 4.4. If β < 0, then the spectrum of Hβ,a is uniformly bounded from below as a → 0;
in other words, there is a constant C > 0 such that

inf σ(Hβ,a) � −C as a → 0.

If β � 0, on the other hand, then the spectrum of Hβ,a is asymptotically unbounded from
below,

inf σ(Hβ,a) → −∞ as a → 0.

Note that although we know the limit spectrum as a → 0 (see lemma 4.1), the resolvent
convergence of theorem 4.3 does not necessarily imply the uniform boundedness from below
of Hβ,a (see remark 4.10).

Proof. Let β < 0. Then an eigenfunction on the (original) edge e has the form

fe(s) =
{

A cosh(κs) + Be sinh(κs), 0 � s � a

Ce cosh(κ(1 − s)), a � s � 1

for κ > 0, the corresponding eigenvalue being λ = −κ2. The Neumann condition f ′
e(1) = 0

at s = 1 is automatically fulfilled, as well as the continuity at s = 0 for the different edges e,
since fe(0) = A is independent of e. The continuity in s = a and the jump condition in the
derivative lead to non-trivial coefficients A, Be and Ce if and only if Be and Ce are independent
of e and if
β

a2
(sinh(κa) cosh κ(1 − a) − aκ cosh κ) + nκ(κa sinh κ − cosh(κa) cosh κ(1 − a)) = 0

with associated eigenvalue λ = −κ(a)2 of multiplicity one. It can be seen that κ(a) is
bounded, and that the above equation reduces to (4.2) as a → 0.

For the second part, assume that β � 0. It is sufficient to calculate the Rayleigh quotient
for the constant test function f = −11 ∈ H1(G) which yields

hβ,a(f )

‖f ‖2
= −1

n

(
β

a2
+

1

a

)
being of order O(a−2) if β < 0 and of order O(a−1) if β = 0, negative in both cases; recall
that n = deg v. �

Similarly, we expect the same behaviour for the operators on the manifold.

Lemma 4.5. If β � 0, then the spectrum of Hβ
ε is asymptotically unbounded from below, i.e.

inf σ
(
Hβ

ε

) → −∞ as ε → 0.

Proof. Again, we plug the constant test function u = −11 into the Rayleigh quotient and obtain

hβ
ε (u)

‖u‖2
= − βε−2α + ε−α

n(1 + ε + εα) + ε vol Xv0

which obviously tends to −∞ as ε → 0. �

Remark 4.6. As for a counterpart to the first claim in lemma 4.4, the proof of the uniform
boundedness from below as ε → 0 for β < 0 seems to need quite subtle estimates to compare
the effect of the two competing potentials on Xε,v0 and Xε,ve

having strength proportional to
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|β|ε−2α and ε−α , respectively. Since the positive contribution Qε,v0 = |β|ε−1−2α is more
singular than the negative contributions Qε,ve

= −ε−1−α , we expect that the threshold of the
spectrum remains bounded as ε → 0.

We can now prove our second main result. For the δ′
s-coupling Hamiltonian Hβ and the

approximating operator Hβ
ε defined in (4.1) and (4.3), respectively, we make the following

claim.

Theorem 4.7. Assume that 0 < α < 1/13, then Hβ
ε and Hβ are δε-quasi-unitarily equivalent,

i.e. J ∗J = id,∥∥(id − JJ ∗)
(
Hβ

ε ∓ i
)−1∥∥ � δε and

∥∥(Hβ
ε ∓ i

)−1
J − J (Hβ ∓ i)−1

∥∥ � δε,

where δε = O(εmin{α,(1−13α)/2}) depends on the quantities in (3.9), and where J is the same
identification operator as in section 3.

Proof. Denote by Hβ,ε = Hβ,aε the ε-dependent intermediate Hamiltonian on the metric
graph with δ-potentials of strength depending on ε as defined before. For the corresponding
graph and manifold model, the lower bound to lengths depends now on ε, specifically,
�0 = aε = εα . Moreover, from the definition of the constants C1/2 � C̃1/2 and ε1/2 in
(2.15) and from proposition 3.2, we conclude that

C̃1/2 = C̃1/2(ε) = O(ε−4α), ε1/2 = ε1/2(ε) = O(ε3α) and δε = O(ε(1−5α)/2).

Note that the dominant term in the error δε (see (3.9)) is the last one containing the
potential. The first convergence follows now immediately from proposition 3.2 together with
lemma 2.12. Moreover, from theorem 3.3 it follows that∥∥(Hβ

ε − i
)−1

J − J (Hβ,ε − i)−1
∥∥ � 10δε max{C̃1/2(ε),

√
2} = O(ε(1−13α)/2)

so that theorem 4.3 yields the sought conclusion. Note that the exponent of ε in δεC̃1/2(ε) is
(1 − 5α)/2 − 4α = (1 − 13α)/2 > 0 provided α < 1/13. �

We can now proceed and state results as in theorems 3.4–3.7 for the δ′
s-approximation;

we will mention some exemplary results in the following theorem.

Remark 4.8. Note that in [P06, App.] or [P09, chapter 4], we considered only non-negative
operators (covering, as usual, operators bounded uniformly from below by a suitable shift).
In our present situation, we can only guarantee the resolvent convergence at non-real points
like z = ±i. Nevertheless, the arguments in [P06] or [P09] can be used to conclude the
convergence of suitable functions of operators as well as the convergence of the dimension of
spectral projections, etc.

Note that the spectrum of Hβ and Hβ
ε here is purely discrete.

Theorem 4.9. We have

‖J (Hβ − z)−1 − (
Hβ

ε − z
)−1

J‖ = O(ε1/2), (4.4a)

‖J (Hβ − z)−1J ∗ − (
Hβ

ε − z
)−1‖ = O(ε1/2) (4.4b)

for z /∈ R. The error depends on the quantities in (3.9) and on z. Moreover, we can replace
the function ϕ(λ) = (λ − z)−1 by any measurable, bounded function converging to a constant
as λ → ∞ and being continuous in a neighbourhood of σ(Hβ).
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For any λ ∈ σ(Hβ) there exists a family {λε}ε with λε ∈ σ
(
Hβ

ε

)
such that λε → λ as

ε → 0. Moreover, the multiplicity is preserved. Finally, the eigenfunctions of Hβ
ε converge to

eigenfunctions of Hβ in the sense of theorem 3.6.

Remark 4.10. Note that the asymptotic lower unboundedness of Hβ
ε (and of the intermediate

operator Hβ,ε) for β � 0 described in lemmata 4.4 and 4.5 is not a contradiction to the fact that
the limit operator Hβ is non-negative. For example, the spectral convergence of an analogue
of theorem 3.5 holds only for compact intervals I ⊂ R. In particular, σ(Hβ) ∩ I = ∅ implies
that

σ
(
Hβ

ε

) ∩ I = ∅ and σ(Hβ,ε) ∩ I = ∅
provided ε > 0 is sufficiently small. This spectral convergence means that the negative
spectral branches of Hβ

ε all have to tend to −∞.

5. Concluding remarks

5.1. Other vertex couplings

Let us first comment on possible extension of the results derived above to more general vertex
couplings. As we have mentioned in the introduction, the result of [CE04] based on the
seminal idea of [CS98] allows for extensions worked out in [ET07]. Considering again a star
graph with n edges, we have specifically:

• A family of couplings obtained as the limit of the star with two additional δ-vertices
added at each edge. The first is at the distance a3 from the central vertex with the coupling
constant −a−3 + βea

−2 at the eth edge, the other at the distance a + a3 with the coupling
−a−1 + γe. In the central vertex we have a δ-coupling of the strength ηa−4. The real
numbers βe, γe and η are coupled by one condition, so the limit yields a 2n-parameter
family of couplings; the norm resolvent convergence is established in this case.

• An
(
n+1

2

)
family of couplings covering generically all boundary conditions with real

coefficients can be obtained similarly if we use one δ-vertex at each edge at the distance
d from the centre and the graph is amended by links of length of order of d connecting
the additional vertices with another δ-coupling in the middle— see [ET07] for a detailed
description. In this case the convergence was established for the boundary conditions.

The proposed approximation is now the following. We replace the graph by a network
with a fat edge width ε and the δ-couplings by constant potentials of the appropriated strength
at the segment of fat edge of length ε. We call the corresponding Schrödinger operator Hω

ε ,
where ω stands now for the appropriate family of parameters, and by Hω the corresponding
limiting operator on the graph itself.

Conjecture 5.1. If a = εα holds in the above setting with α > 0 sufficiently small then the
claim analogous to theorem 4.7 is valid with the same identification operator J.

5.2. Purely geometric approximations

One way to provide a geometric approximation would be to let the particle live on a ‘sleeve-
type’ manifold Xε—physically one can imagine a nanotube network—being subject to a
curvature-induced potential such as considered in [DEK01]. A trouble with this idea, however,
is that the potential would naturally scale as ε−2 in the limit which does not fit into the
approximation scheme discussed here, and a more elaborate approach has to be sought.
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5.3. Physical realization of the approximations

Let us finally make a few remarks on the meaning of the obtained approximations. Since
the non-trivial coupling comes from particularly chosen potentials on the thin tube network
a natural question is in which way we can control them. We have seen above that there are
topological and analytic obstructions for certain purely geometric approximations.

However, there are other ways how to realize the potentials in question physically.
Thinking of the network as of a model of a semiconductor system, one can certainly use
a local variation of the material parameters. Doping the network locally changes the Fermi
energy at the spot creating effectively a potential well or barrier. From the practical point of
view, indeed, the applicability is limited because our approximations need potentials which
get stronger with the diminishing tube width ε.

Another, and more exciting way, is to use external fields. It is a common practise in
experiment with nanosystems to add ‘gates’, or local electrodes, to which a voltage can be
applied. In this way one can produce local potentials fitting into our approximation scheme,
without material restrictions. This opens an rather intriguing possibility of creating quantum
graphs with the vertex coupling controllable by an experimentalist (see e.g. [BG08] for some
numerical simulations).
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[P09] Post O 2009 Spectral analysis on graph-like spaces Habilitation Thesis Humboldt-Universität zu Berlin

[RS01] Rubinstein J and Schatzman M 2001 Variational problems on multiply connected thin strips: I. Basic
estimates and convergence of the Laplacian spectrum Arch. Ration. Mech. Anal. 160 271–308

[Sai00] Saito Y 2000 The limiting equation for Neumann Laplacians on shrinking domains Electron. J. Differ.
Equ. 2000 No 31

22

http://dx.doi.org/10.1142/S0129055X07003073
http://dx.doi.org/10.1214/aop/1176989018
http://dx.doi.org/10.1112/plms/pdn020
http://dx.doi.org/10.1088/0959-7174/14/1/014
http://dx.doi.org/10.1006/jmaa.2000.7415
http://dx.doi.org/10.1007/s00220-007-0220-8
http://dx.doi.org/10.1017/S0305004106009820
http://dx.doi.org/10.1088/0305-4470/38/22/015
http://dx.doi.org/10.1007/s00023-006-0272-x
http://dx.doi.org/10.1007/s002050100164

	1. Introduction
	2. The graph and manifold models
	2.1. The graph model
	2.2. The manifold model of the `fat' graph

	3. Approximation of delta
	3.1. Quasi-unitary identification operators
	3.2. Quasi-unitary equivalence

	4. Approximation of the
	5. Concluding remarks
	5.1. Other vertex couplings
	5.2. Purely geometric approximations
	5.3. Physical realization of the approximations

	Acknowledgments
	References

